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The classical limit of the quantum theory of damping (without radiative corrections) has been studied 
for scattering procedures involving photons and neutral or charge-symmetric mesons [with S(S), PS(PV), 
V(V)t and V(T) coupling] interacting with nucleons. In the case of dipole coupling the nuclear spin \ ft must 
be replaced by a classical intrinsic angular momentum, and classical rather than quantum mechanical 
averages over spin variables must be taken. The cross sections are then calculated taking classical limits 
at all stages rather than just in the summation over the final stages. Comparison is made with the cor­
responding results in the classical field and action-at-a-distance theories; the cross sections agree with 
those of the theory of action at a distance in all cases for which these results are available. 

I. INTRODUCTION 

A PARTICLE emitting radiation (electromagnetic 
or other) is generally considered to experience a 

radiation force. The interpretation of this force differs 
depending on the point of view taken, that of field 
theory or that of action at a distance.1 The first field-
theoretical interpretation of the electromagnetic radi­
ation reaction force, the Lorentz theory of the electron,2 

considered it as part of the force of the charge on itself. 
This theory was quite compatible with experiment for 
small electron accelerations, and emitted wave lengths 
large in comparison with the electron radius. However, 
the total self-force diverged in the limit of a point 
electron, and led to other difficulties if a finite electron 
was assumed. 

Lorentz's derivation was restricted to low velocities; 
however, this limitation was overcome by Schott3 who 
obtained a relativistically invariant set of equations 
of motion. An alternative derivation of Schott's result 
was given by Dirac4 who proposed to treat the electron 
as a point singularity in the electromagnetic field and 
obtained the equations of motion of the electron by 
requiring conservation of energy and momentum for 
the system of field and singularities. The method of 
Dirac was extended by Bhabha,5 '6 Harish-Chandra,7 

and Le Couteur8 to include the case of nucleons in 
mesic fields.9 In all these calculations retarded inter­
actions were used exclusively, although Dirac stated 
that his calculations were symmetric in time; it was 

* Present address: Department of Physics, Utah State Uni­
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1 For a general discussion of this problem see P. Havas, in Ar-
gonne National Laboratory Summer Lectures on Theoretical 
Physics, 1958 ANL-5982 (unpublished), p. 124. 

2 H . A. Lorentz, Collected Papers (M. Nijhoff, The Hague, 
1936), Vol. II, pp. 281 and 343. 

3 G. A. Schott, Electromagnetic Radiation (Cambridge Uni­
versity Press, New York, 1912); Phil. Mag. 29, 49 (1915). 

4 P. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938). 
5 H . Bhabha, Proc. Roy. Soc. (London) A172, 384 (1939). 
6 H . Bhabha, Proc. Roy. Soc. (London) A178, 314 (1941). 
7 Harish-Chandra, Proc. Roy. Soc. (London) A185, 269 (1946). 
8 K. J. Le Couteur, Proc. Cambridge Phil. Soc. 45, 429 (1949). 
9 For a discussion of an alternative method, see P. Havas, in 

Recent Developments in General Relativity (Pergamon Press, New 
York, 1962), p. 259. 

later shown, however, that this time symmetry is only 
apparent.10 

The restriction to retarded potentials introduces a 
time asymmetry not contained in the underlying field 
equations. Time-symmetric fields can be used, however, 
both in field theory10 and in the action-at-a-distance 
theory developed by Fokker,11 but the resulting equa­
tions appear to be unable to account for radiation. 
However, it was suggested by Wheeler and Feynman12 

that these equations should be supplemented by a 
condition of "complete absorption";13 the resulting 
theory gives a description of radiation equivalent to 
that provided by the Lorentz-Dirac equations. 

The extension of action-at-a-distance theory to 
include the motion of nucleons in mesic fields was 
carried out by several authors.14-18 Mesic fields do not 
propagate with the velocity of light and thus nucleons 
could "catch up" with their own radiated fields; the 
equations of motion of field theory thus contain terms 
involving the past (for retarded interactions) or entire 
(for symmetric interactions) motion. Such terms must 
be deleted as a matter of principle in action-at-a-
distance theory, and thus the equations of motion of 
the two theories are not equivalent. The resulting 
differences between their predictions for meson scatter­
ing were investigated by Mehl and Havas19"21 with the 
intent of establishing a basis for a future experimental 
decision between the two theories, which cannot be 
made on the basis of electrodynamics.10 

10 P. Havas, Phys. Rev. 74, 456 (1948). 
11 A. D. Fokker, Z. Physik 58, 386 (1929). 
12 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 

(1954). 
13 For a discussion of this condition see reference 10 and P. 

Havas, Phys. Rev. 86, 974 (1952). 
14 P. Havas, Phys. Rev. 87, 309 (1952). 
15 P. Havas, Phys. Rev. 91, 997 (1953). 
16 H. Kanazawe, Progr. Theoret. Phys. (Kyoto) 5, 1050 (1950). 
17 H. Steinwedel, S.-B. Heidelberger Akad. Wiss., Math.-

Naturwiss. Kl. 281 (1950). 
18 R. C. Majumdar, S. Gupta, and S. K. Trehan, Progr. Theoret. 

Phys. (Kyoto) 12, 31 and 697 (1954). 
19 C. Mehl and P. Havas, Phys. Rev. 91, 393 (1953). 
20 P. Havas, Phys. Rev. 93, 882 (1954). 
21 C. Mehl, Lehigh University thesis, 1954 (unpublished); C. 

Mehl and P. Havas (to be published). 
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A quantum theory of radiation damping applicable 
to scattering problems was developed by Heitler,22 

Gora,23 and Wilson.24 The classical limit (fi —> 0) of the 
cross sections for meson-nucleon scattering obtained 
by this theory was compared with the classical field-
theoretical results of Bhabha5,6 and Le Couteur8 by 
Vachaspati.25 He noted that there was some similarity 
in form in the case of charge scattering, but much less 
for dipole scattering, where even constant factors 
disagreed. We noted, on the other hand, that the 
classical limit of the Heitler results did resemble much 
more closely the results of Mehl and Havas. This 
suggested (in the absence of a complete quantum 
theory of action at a distance) that a detailed com­
parison of the classical limit of the meson-scattering 
cross sections obtained by the Heitler theory of radiation 
damping with the corresponding action-at-a-distance 
results should be undertaken. This comparison indeed 
showed that the cross sections agreed, provided the 
limit was properly defined; in the following we present 
a brief account of these calculations.26 

II. THE QUANTUM THEORY OF 
RADIATION DAMPING 

According to Heitler's theory18 a transition from 
state A to state B is described by the integral equation 

UAB=HAB—iTrHAcUcBpd&. (1) 

The solution UAB of Eq. (1) is related to the transition 
probability per unit time WAB by 

WAB= (2w/fi) | UAB| 2P> (2) 

UAB is the first nonvanishing matrix element, p is the 
density of states, and dQ the differential solid angle. 
Summations over repeated indices are understood as 
well as integrations over differentials. In the following 
$out and 4>in stand for the Schroedinger wave functions 
of outgoing and incoming waves, respectively, and P 
for the Cauchy principal value. 

A derivation based on a method developed by Dirac27 

in scattering theory was given by Ma and Hsiieh,28 

who used the stationary method of perturbation theory; 
they obtained 

UAB=HAB+HACUCBPLP/(EB-ED) 

- iirh (EB-ED)2dEDdQ. (3) 

22 W. Heitler, Proc. Cambridge Phil. Soc. 37, 291 (1941). 
» E . Gora, Acta Phys. Polon. 7, 159 (1938). 
24 A. H. Wilson, Proc. Cambridge Phil. Soc. 37, 301 (1941). 
26 Vachaspati, Phys. Rev. 80, 973 (1950). 
26 For details see J. E. Chatelain, Lehigh University thesis, 

1957 (unpublished). 
27 P. Dirac, Quantum Mechanics (Oxford University Press, 

Oxford, 1948), 3rd ed., p. 198. 
28 S. T. Ma and C. F. Hsiieh, Proc. Cambridge Phil. Soc. 40, 

167 (1940). 

The analysis of Dirac shows that the term in brackets 
is necessary if UAB is to represent a scattered wave, 
and Blatt29 in further discussion of the bracket quantity 
showed that the term P/(EB—ED) alone leads to 
i(#out+0in) at large distances. The term in the 5 
function then corresponds to |(0out—$in). Ma and 
Hsiieh neglect the term P/(EB—ED) in Eq. (3), which 
then reduces to Eq. (1). In a classical field-theoretical 
derivation of the Heitler equation, Blatt29 showed 
explicitly that it is one-half the difference between the 
retarded and advanced potential of the scattered wave 
that acts on the source. 

The original Heitler theory arbitrarily rejected higher 
order effects ("round-about transitions") which in­
volved emission and subsequent reabsorption of quanta 
by the same particle. These self-action effects resulted 
in diverging integrals which at that time had no 
physical interpretation. In action-at-a-distance theory, 
on the other hand, self-action is rejected a priori. 
Furthermore, the Wheeler-Feynman condition12 leads 
to a force acting on the "emitter' ' by the "absorber" 
determined by one-half the difference between the 
retarded and advanced potential in action-at-a-distance 
theory, while the same expression is regarded as the 
force on the particle by the radiation field in radiation 
damping theory. Thus, the original Heitler theory has 
some similarities with the theory of action-at-a-distance. 

A more informative comparison of the two theories 
would be possible if there were a complete quantum 
theory of action at a distance, or if the classical Heitler 
equation, as derived by Blatt, could be derived from 
the action-at-a-distance formalism. Although some 
work on a quantum theory of action at a distance has 
been undertaken,30 the formalism has not been devel­
oped sufficiently to allow the study of problems corre­
sponding to mesic interactions. Attempts to derive the 
classical Heitler equation from action at a distance 
have not been successful until now. Thus, it seemed 
that a direct comparison of the predictions of the two 
theories would be the most promising way to establish 
the degree of similarity. 

In addition to Vachaspati,25 partial comparisons of 
the Heitler theory with classical field theory were also 
indicated by Bhabha,5 Le Couteur,8 and Majumdar.31 

The results were inconclusive, and in the case of 
Vachaspati and Majumdar, some of the formulas seem 
to be in error. All of these comparisons share a common 
inadequacy in that the methods employed in obtaining 
a classical limit in the case of dipole coupling still 
involve quantum mechanical summations. Therefore, 
we have recalculated the results of these authors and 
also extended the comparisons to other processes. 

29 J. M. Blatt, Phys. Rev. 72, 466 (1947). 
30 H. J. Groenewold, Koninkl. Ned. Akad. Wetenschap. Proc. 

52, 133 and 226 (1949); G. Ludwig, Z. Naturforsch. 5a, 637 
(1950); L. Foldy, Phys. Rev. 122, 512 (1961). 

31 R. C. Majumdar, Proc. Indian Acad, of Sci. 32, 11 (1945). 
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HI. CROSS SECTIONS AND CLASSICAL SUMS 

From Eq. (2) we can obtain the cross sections in the 
usual manner, using the density of final states p and 
the incident intensity I 

p=#o>V(2ir)3^2, I=**K<*/€0 (4) 

p=«V(2ir)Vft, I=c/v (5) 

for mesons and photons, respectively. The notation 
used here and in subsequent formulas is explained in 
the Appendix. 

Dirac (spin | ) particles can interact with the meson 
field by mesic charge coupling or by dipole coupling. 
In approaching the classical limit of radiation damping 
cross sections we have to distinguish these two possi­
bilities. In the case of charge coupling the classical 
limit {fi —» 0) of the Dirac particle is a particle with no 
angular momentum. However, in the classical theory 
the mesic dipole moment is proportional to the angular 
momentum. Thus, for a Dirac particle with dipole 
coupling, we must take as a classical analog a particle 
with an intrinsic angular momentum I=\h (see 
Bhabha6). 

Both in the solution of the damping equation (1) and 
in the calculation of the total scattering cross section 
from (4) and (5) we encounter the same type of sum­
mations. In the case of dipole coupling we will have 
occasion to average and sum over expressions containing 
the Pauli spin operator a. The quantum mechanical 
summations and averages over all the angles between 
a given vector and the spin operator <F are different, 
however, because of the discrete nature of cr, from the 
corresponding classical results obtained by considering 
a as an ordinary unit vector. In comparisons of field-
theoretical cross sections with those of radiation 
damping, Le Couteur8 and Vachaspati25 account for 
differences only in the summations occurring in the 
integration of differential cross sections, but not in 
the solution of Eq. (1). 

The summations over all directions of a unit vector 
k occurring most frequently are 

/ 

f 

<xk <r-krffi=47r (Q.M.); $ir (CI.) 

<r-kk-A<2Q=f7r<r-A (Q.M. and CI.) 

(6) 

(7) 

/ 
<F-kcF-Aa-M2=-|7rcr-A (Q.M.); ITTCF- A (CI.) (8) 

or-k CF-B cr-A a-kdQ 

= |7r(2cr-Acr-B+cfBcr-A) (Q.M.); 

= |7r(2cr-Acr-B-cfBcfA) (CL). (9) 

IV. MATRIX ELEMENTS AND RESULTS 

Now we consider scattering of photons and charged 
and neutral mesons, as well as charge exchange scat­
tering by nucleons. We distinguish two different 
physical situations. In the first (case I) we consider 
the nucleon as the source of an electromagnetic and of 
a neutral meson field, and in the second (case II) as the 
source of a charge-symmetric meson field. We do not 
consider combinations of case I and case II here as 
these cross sections have not been calculated as yet 
in classical action-at-a-distance theory (approximate 
quantum mechanical radiation damping results were 
obtained by Heitler32). 

Case / . We consider the following couplings: S(S), 
PS(PV), 7(7) , and V(T). For scalar and vector 
coupling the scattering is due to the motion of the 
nucleon, while for tensor and pseudovector coupling 
the scattering is due to the nucleon spin. 

The scattering problem is initially formulated in 
terms of the usual relativistic Hamiltonian of a nucleon 
interacting with a quantized photon-meson field with 
the above-mentioned interactions (in the quantum 
theory of radiation damping all processes have to be 
considered together). For a quantized field the energy 
is fio) and the limit ti—>0 may be regarded as the 
limit feo= c, e —> 0, or as a low energy limit.33 

Since we are interested in classical results we use 
the low-energy (velocity) limit for nucleons. The 
desired matrix elements are obtained by performing a 
Foldy-Wouthuysen transformation of the Hamiltonian 
to the first order in reciprocal nucleon mass.26 The 
resulting first-order matrix elements, together with 
the possible Feynman diagrams, yield the following 
compound matrix elements for scalar and vector 
coupling 

Hfi= (2irh*cYK>/Me*)nrn, S{S) 

HLL= (2rh*frV/M*)nf • ii,, V{V) 

HTL= - (i2TrWgW/M<?)]f • nt, V{V) 

HTT = (2x*V/Jf €)j,-j,-, V(V) (10) 
HLp= (2w¥gefxc2/Mei)nr J,, V(V) 
HTP= (2wWge/Me)jr Jiy V(V) 
HPP= (2*»*/Me)Jr h, V(V) 

and for tensor and pseudovector coupling 

Hfi= (27r/2^VZ2/xV)(cf.n/ a n~cr n* a-n,), 
PS(PV) 

Hfi= (27r/2^2i:2/xV)(a.j /Xn / cr.j.Xn, 
-cr.jiXiii H / X i v ) , V(T) (11) 

Hfi= (2TT^2/€2)(O-A a-B-cr-B <r- A), V(T) 
where A or B=i£gj or keJ. 

32 W. Heitler, Proc. Roy. Irish Acad. 49A7,101 (1943). An exact 
solution of the damping equation is given in reference 26, Ap­
pendix B. 

33 See, e.g., W. Heitler, The Quantum Theory of Radiation (Ox­
ford University Press, New York, 1954), 3rd ed. 



1462 J . E . C H A T E L A I N A N D P . H A V A S 

The solution of the damping equation readily follows 
if one substitutes 

Ufi=XfiHfi+YfiHif (12) 

in the damping equation and then solves the resulting 
system of linear equations for the coefficients X and 
F 2 6 ; the results are special cases of case II discussed 
below. 

The total cross sections obtained from Eqs. (6) and 
(5) by the procedure indicated for S(S) and V(V) 
agree with the results of Havas20 in action-at-a-distance 
theory and thus are not presented explicitly. If the 
photon coupling constant is equated to zero, the 
results agree with those of Mehl and Havas9 for V(V) 
scattering of neutral mesons. Our results are also in 
agreement with Mehl and Havas for V(T) and PS(PV) 
scattering of neutral mesons. 

Case II. For a nucleon which is a source of a charge-
symmetric field, scattering and charge exchange scat­
tering have to be considered together. In the first 
approximation scattering can be accomplished without 
nucleon recoil. Therefore, the matrix elements can be 
obtained from the usual relativistic Hamiltonian by 
taking the limits for the Dirac operators 

« - * 0 , 0 - » l , r ~ * 0 , 

75—>0, /3orDirac—» CFPauli. (13) 

The resulting first-order matrix elements, together 
with the Feynman diagrams, yield the following com­
pound matrix elements in the case of vector mesons26 

tv (m 
HLL=2TrcYh2K2/e\\ 

HTL or HLT= (2irc2fgK2fi2/e2x2)vh or ,, 

HTT- (2irc2f2¥K2/e2
X

2)^h IF-ji, 
HLLo= HLoL= 4TC2ggQti2K2/e2

x
2, 

HLTQ or HToL = (4:irc2gfQh2K2/e2x2)*']oi or /, 

HTLQ or HLoT= (±7rc*gofWK>/e*x*)<T>U or ,, 

HTT0 or HTQT= (2irc2foffi2K2/e2x2)(vj/cr jo; 

+ <r-jo*<r-j/) or (o"jo/(r-j*+cr-j;<r-j0/), 

HL0L0= HLQT0=HTQL0—0, 

HT0T0= (2wc2fo2WK2/e2x2) (<r-j0/<r jo*—or• j0l<r jo/). 

The solution of the damping equation, though 
somewhat more involved than in case I, is obtained by 
an analogous procedure. This problem was solved by 
Heitler32 for the quantum mechanical case; the solution 
to the damping equation presented below is the classical 
limit of the Heitler result, but can only be obtained by 
recalculation using "classical sums'' as discussed above. 
Putting 

Ufi= (27rc2fi2K2/e2
x
2)(XfiAfAi+YfiAiAf)J (15) 

where 
A=i> gfh f<*'h or/o<r-jo, 

we get the following results: 

YTTO= YTOT= V( l+fe /o 2 )= - YT,T9 

all other F/;=0; 

XLL = XTL=ll+2(2Qgo2+iQfo2)lW-\ 

XT0L
Z=XLQL — 2W~1 = XLLO=:=XTLO) 

XuLa=xT«L»=mi+lQP)w-\ 

+cie/o2+ (32/9)(22/o4]/(i+ie/o2)} w-\ 

XUT=[2-&tfQQt+tQr)/<\+&ff)'\w-1, (16) 
1+ (8/3)C/o2+ (Q£+i Qf) ( l + W ) 

XT0T = W *, 

i+l(3/o2 

XuTa=L4Qg+§QP 
+m°2(2Qgi+§QP)/(i+m<?)~]w-\ 

XLT»= [2-lQf- WWPgf- (W9)e2/o2/2 

+ie/o2/(i+te/o2)]^-1, 
XT,T,={4Qg>+iQf+i/(i+iQfm-Qs2-m2 

-2QgWg>+&p)-]}W-\ 

XTr.= Ll+Qg2+iQ2gigo2+ (8/3)QY/o2 

+te/o2/(i+te/o2)]w-1, 
where 

W= 1-iQp-Qf- (2Qgi+iQP)(2Qgoi+iQU) 
and 

Q=-iKz/uhx\ 
The cross sections can be obtained from this as before, 
but are not given explicitly because of the lengthy 
expressions involved. 

A direct comparison of the cross sections calculated 
with the above solutions with the corresponding results 
of classical action-at-a-distance theory is not possible 
at the present time because of the absence of such 
calculations including charge exchange. However, if we 
put /o=go=0, our results agree with those of Mehl21 

and Majumdar et al.ls for the scattering of charged 
mesons. 

The results for charged scalar and pseudoscalar 
mesons follow directly from the above results. We need 
only limit our solutions to either g and go or / and f0 

coupling and replace § / (or /0) by \f (or / 0 ) ; the factor 
2 is the result of summing over two states of transverse 
polarization. We again get agreement with the action-
at-a-distance results18,21 for go=/o=0. 

VI. DISCUSSION 

The scattering cross sections which we have calcu­
lated employing the classical limit of the radiation 
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damping theory as described agree with the results of 
classical action-at-a-distance theory in all cases where 
comparison is possible.34 

The broad area of agreement of the two theories 
would tend to indicate that, indeed, there exists 
general correspondence at least in the approximation 
considered. 

The classical action-at-a-distance cross sections in 
both the neutral and charge-symmetric theories are 
obtained assuming small amplitude fields and small 
nucleon vibrations and recoil velocity. The correspond­
ence with radiation damping theory cannot be extended 
to high nucleon recoil velocities, as the classical limit of 
this theory is restricted to low energy fields. The above 
assumptions decouple the spin and isotopic spin in the 
classical charge-symmetric theory and thus the results 
for the scattering of charged mesons resemble the 
quantum mechanical ones for charged, rather than 
charge-symmetric, theory. These assumptions also 
exclude the possibility of charge exchange. The results 
in radiation damping theory do involve higher powers 
in the coupling constants than the classical calculations 
and are therefore presumably more accurate. To 
increase the accuracy of the calculations any further 
would require the use of radiative corrections. With 
these corrections we might expect the theory to corre­
spond more closely to classical field theory than to 
action-at-a-distance theory because of the explicit 
appearance of self-actions, although the equations of 
the latter theory also contain terms of the same form 
as the finite classical field-theoretical self-action, but 
with different interpretation. This question is currently 
being investigated. 

On the other hand, the development of a complete 
action-at-a-distance quantum theory would allow direct 
comparison with the quantum theory of radiation 

34 The classical action-at-a-distance cross sections for PV(PV) 
and PV(T) have recently been obtained by A. D. Craft, Lehigh 
University thesis, 1959 (unpublished), and A. D. Craft and P. 
Havas (to be published). The corresponding quantum mechanical 
calculations are in progress. 

damping, without necessitating a study of the classical 
limit. Conversely, the similarities revealed between the 
Heitler theory and the classical theory of action at a 
distance could be exploited to anticipate the results of 
a future quantum theory of action at a distance by 
calculations based on the quantum theory of radiation 
damping. 

APPENDIX: NOTATION 

The following is a list of those symbols used whose 
meaning is not obvious or explicitly explained in the 
text. We have also used g and / as the mesic charge 
and dipole coupling constants, respectively, for the 
scalar, pseudoscalar, and vector meson theories; this 
is not intended to imply that the coupling constants of 
these theories are equal, but as there is no mixing of 
these theories there is no chance for confusion.35 

X nc/h (reciprocal Compton wavelength of meson); 
e Meson energy or photon energy; 
E Nucleon energy; 
K Meson wave number; 
k Photon wave number; 
ix Meson mass; 
M Nucleon mass; 
j Transverse polarization vector for mesons; 
n Longitudinal polarization vector for mesons; 
J Transverse polarization vector for photons; 
V Normalization volume; 

Subscripts: 

i Initial state; 
/ Final state; 
0 Neutral meson (used only in charge exchange 

calculations); 
T Transverse meson; 
L Longitudinal meson; 
P Photon. 

35 The notation differs slightly from that used in reference 26; 
also, the definition of % given there should be replaced by the one 
used here. 


